Mechanistic static modelによるDDI予測

2023-05-08
Mechanistic static model(MSM)によるDDI予測について、とても良い論文が2報出ていますので、ご紹介したいと思います。

1報目は、FDA申請資料を基に、MSMとDynamic PBPK modelを比較した研究です。

Gomez-Mantilla, J. D., Huang, F., & Peters, S. A. (2023). Can Mechanistic Static Models for Drug-Drug Interactions Support Regulatory Filing for Study Waivers and Label Recommendations?. Clinical Pharmacokinetics, 62(3), 457-480.

https://link.springer.com/article/10.1007/s40262-022-01204-4

両手法で同様の結果が得られることから、著者らは、Dynamic PBPK modelの使用は、その独自の強みを活用できる利用に限定されるべき、と結論しています。
”The results reported in this study should encourage the use of models that best fit an intended purpose, limiting the use of physiologically based pharmacokinetic models to those applications that leverage its unique strengths”
”We propose that fit-for-purpose simpler approaches can be used to support regulatory filing, reserving the use of physiologically based pharmacokinetic models to those applications that cannot be served by static models.”

なぜ、DDI予測については、MSMとDynamic PBPK modelでほぼ同じになるのか?については、また別の機会に考えてみたいと思います。

2報目は、in vitroとin vivoのデータを有効に活用して、MSMにおけるDDIに関するパラメータの推定精度を高めるという研究です。

Hozuki, S., Yoshioka, H., Asano, S., Nakamura, M., Koh, S., Shibata, Y., ... & Hisaka, A. (2023). Integrated Use of In Vitro and In Vivo Information for Comprehensive Prediction of Drug Interactions Due to Inhibition of Multiple CYP Isoenzymes. Clinical Pharmacokinetics, 1-12.

https://link.springer.com/article/10.1007/s40262-023-01234-6

一般的なlocal middle-out approachでは、parameter fitting後は、in vitroのデータからの推定値は無視されますが(in vivoから逆推定した値に置き換えられるため)、本アプローチでは、ベイズ統計を用いて事後確率としてパラメータ推定することで、in vitroとin vivoの情報を包括的に使用する方法が提案されています。

現在、Dynamic PBPK + local middle-out approachという手法の論文が氾濫しており、ややもすると、上記2報のような論文の価値が正当に評価されないかもしないので、ここで紹介させていただきました。
これまで、このブログで何度も書きましたが、非常に複雑なPBPK modelのパラメータを、in vivo PKデータからlocal middle-out approachで個々の薬物について求めることには、とても注意が必要です(上手く行くのは、強力かつ特異性の高いinhibitorのあるDDIのようなケースに限られます)。また、そのような方法で、異なる臨床条件下に対する予測精度が上がるか否かについては、これまで系統的な検証が行われていないため、エビデンスレベルが低いです。1報目の論文では、今後、MSMとDynamic PBPK modelを並行して実施し、両者を比較することで、前者の限界と後者の有用性を明らかにすることが提案されています。

なお、物性との関係が深い経口吸収性については、Bottom-upによるFa予測性について、MSMとDynamic PBPK modelによる予測精度の系統的な検証が、すでに行われています。
Matsumura, N., Hayashi, S., Akiyama, Y., Ono, A., Funaki, S., Tamura, N., ... & Sugano, K. (2020). Prediction characteristics of oral absorption simulation software evaluated using structurally diverse low-solubility drugs. Journal of Pharmaceutical Sciences, 109(3), 1403-1416.

ベイズ統計について、自分はまだまだ勉強不足なのですが、薬学分野では現在あまり利用されていないように思います。例えば、製剤改良時におけるBE試験の例数追加などに利用できればよいな?と思います。